Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice.
نویسندگان
چکیده
It has been shown previously that multilineage human hematopoiesis is maintained within human fetal bone marrow (BM) fragments implanted into severe combined immunodeficient (SCID) mice. We describe here an application of this animal model, the SCID-hu mouse, to the study of human myeloid leukemias. BM cells from 8 patients with various types of myeloid leukemias were injected directly into human bone grafts in the SCID-hu mouse. Cells from 7 patients grew in the human marrow without spreading to the mouse marrow. Cells from 6 of these patients were successfully transferred in vivo to secondary SCID-hu recipients. The surface phenotype and the cytologic features of the leukemia cells were conserved during passage in vivo. Thus, human myeloid leukemia cells could be reproducibly propagated in the human marrow environment in SCID-hu mice. The differentiation of promyelocytic leukemia cells in the SCID-hu mice was induced by all-trans retinoic acid, suggesting that the biologic features of the leukemia cells were maintained as well. Finally, evidence for a leukemic progenitor cell population in one case of acute myelogenous leukemia was provided with this system. This model may provide a useful tool for studying the biology of human myeloid leukemia as well as for evaluating new therapeutic modalities for myeloid leukemias.
منابع مشابه
Propagation of human blastic myeloid leukemias in the SCID mouse.
Existing in vitro culture technology does not permit the routine propagation of most human myeloid leukemias. Previous work has shown the usefulness of mice with severe combined immunodeficiency (SCID) for the growth of human lymphoblastic leukemia. We show here that human myeloid cell lines and bone marrow samples from patients with acute myeloid leukemia (AML) and blast crisis of chronic myel...
متن کاملPrimary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations.
Progress in unraveling the biology of myeloma has suffered from lack of an in vitro or in vivo system for reproducible growth of myeloma cells and development of disease manifestations. The SCID-hu mouse harbors a human microenvironment in the form of human fetal bone. Myeloma cells from the bone marrow of 80% of patients readily grew in the human environment of SCID-hu mice. Engraftment of mye...
متن کاملSevere combined immunodeficiency mice engrafted with human T cells, B cells, and myeloid cells after transplantation with human fetal bone marrow or liver cells and implanted with human fetal thymus: a model for studying human gene therapy.
To develop an in vivo model wherein human hematopoiesis occurs, we transplanted severe combined immunodeficiency (SCID) mice with either human fetal bone marrow (HFBM) or human fetal liver (HFL). After transplantation of SCID mice with cultured HFBM (BM-SCID-hu mice) or HFL cells (Liv-SCID-hu mice), significant engraftment of the mouse bone marrow (BM) and population of the peripheral blood wit...
متن کاملAssessment of Benzene-Induced Hematotoxicity Using a Human-Like Hematopoietic Lineage in NOD/Shi-scid/IL-2Rγnull Mice
Despite recent advancements, it is still difficult to evaluate in vivo responses to toxicants in humans. Development of a system that can mimic the in vivo responses of human cells will enable more accurate health risk assessments. A surrogate human hematopoietic lineage can be established in NOD/Shi-scid/IL-2Rγ(null) (NOG) mice by transplanting human hematopoietic stem/progenitor cells (Hu-NOG...
متن کاملEngraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice.
Human fetal bone fragments implanted subcutaneously in immunodeficient (SCID) mice maintain active human hematopoiesis. In this study, we show that this human hematopoietic microenvironment supports the engraftment and differentiation of HLA-mismatched, CD34+ primitive hematopoietic progenitor cells isolated from fetal and adult human bone marrow (BM). The BM CD34+ cells were depleted of CD2, C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 82 8 شماره
صفحات -
تاریخ انتشار 1993